Font Size
A
A
A

Breast Cancer Treatment (Professional) (cont.)

Stage IIIB, Inoperable IIIC, IV, Recurrent, and Metastatic Breast Cancer

Note: Some citations in the text of this section are followed by a level of evidence. The PDQ editorial boards use a formal ranking system to help the reader judge the strength of evidence linked to the reported results of a therapeutic strategy. (Refer to the PDQ summary on Levels of Evidence for more information.)

Inoperable Stage IIIB or IIIC or Inflammatory Breast Cancer

Multimodality therapy delivered with curative intent is the standard of care for patients with clinical stage IIIB disease. In a retrospective series, approximately 32% of patients with ipsilateral supraclavicular node involvement and no evidence of distant metastases (pN3c) had prolonged disease-free survival (DFS) at 10 years with combined modality therapy.[1] Although these results have not been replicated in another series, this result suggests such patients should be treated with the same intent.

Initial surgery is generally limited to biopsy to permit the determination of histology, estrogen-receptor (ER) and progesterone-receptor (PR) levels, and human epidermal growth factor receptor 2 (HER2/neu) overexpression. Initial treatment with anthracycline-based chemotherapy and/or taxane-based therapy is standard.[2,3] In one series of 178 patients with inflammatory breast cancer, DFS was 28% at 15 years with a combined-modality approach.[2][Level of evidence: 3iiiDii] For patients who respond to neoadjuvant chemotherapy, local therapy may consist of total mastectomy with axillary lymph node dissection followed by postoperative radiation therapy to the chest wall and regional lymphatics. Breast-conserving therapy can be considered in patients with a good partial or complete response to neoadjuvant chemotherapy.[3] Subsequent systemic therapy may consist of further chemotherapy. Hormone therapy should be administered to patients whose tumors are ER-positive or unknown. All patients should be considered candidates for clinical trials to evaluate the most appropriate fashion in which to administer the various components of multimodality regimens.

Current Clinical Trials

Check for U.S. clinical trials from NCI's list of cancer clinical trials that are now accepting patients with stage IIIB breast cancer, stage IIIC breast cancer and inflammatory breast cancer. The list of clinical trials can be further narrowed by location, drug, intervention, and other criteria.

General information about clinical trials is also available from the NCI Web site.

Stage IV, Recurrent, and Metastatic Breast Cancer

Recurrent breast cancer is often responsive to therapy, though treatment is rarely curative at this stage of disease. Patients with localized breast or chest wall recurrences, however, may be long-term survivors with appropriate therapy. Prior to treatment for recurrent or metastatic cancer, restaging to evaluate extent of disease is indicated. Cytologic or histologic documentation of recurrent or metastatic disease should be obtained whenever possible. The ER levels and PR levels, HER2/neu positivity at the time of recurrence, and previous treatment should be considered, if known, when selecting therapy. ER status may change at the time of recurrence. In a single small study by the Cancer and Leukemia Group B (MDA-MBDT-8081), 36% of hormone receptor–positive tumors were found to be receptor negative in biopsy specimens isolated at the time of recurrence.[4] Patients in this study had no interval treatment. If ER and PR status is unknown, then the site(s) of recurrence, disease-free interval, response to previous treatment, and menopausal status are useful in selecting chemotherapy or hormone therapy.[5]

Recurrent local-regional breast cancer

Patients with local-regional breast cancer recurrence may become long-term survivors with appropriate therapy. A clinical trial indicated that between 10% and 20% of patients will have locally recurrent disease in the breast between 1 and 9 years after breast-conservation surgery plus radiation therapy.[6] Nine percent to 25% of these patients will have distant metastases or locally extensive disease at the time of recurrence.[7,8,9] Patients with local-regional recurrence should be considered for further local treatment (e.g., mastectomy). In one series, the 5-year actuarial rate of relapse for patients treated for invasive recurrence after initial breast conservation and radiation therapy was 52%.[8] A phase III randomized study showed that local control of cutaneous metastases could be achieved with the application of topical miltefosine; however, the drug is not currently available in the United States.[10][Level of evidence: 1iiDiii]

Local chest wall recurrence following mastectomy is usually the harbinger of widespread disease, but, in a subset of patients, it may be the only site of recurrence. For patients in this subset, surgery and/or radiation therapy may be curative.[11,12] Patients with chest wall recurrences of less than 3 cm, axillary and internal mammary node recurrence (not supraclavicular, which has a poorer survival), and a greater than 2-year disease-free interval prior to recurrence have the best chance for prolonged survival.[12] The 5-year DFS rate in one series of such patients was 25%, with a 10-year rate of 15%.[13] The local-regional control rate was 57% at 10 years. Systemic therapy should be considered in patients with local regional recurrence caused by the high risk of subsequent metastases.[14] No randomized controlled studies are available to guide patient care in this situation.

Stage IV and metastatic disease

Systemic disease

Treatment for systemic disease is palliative in intent. Goals of treatment include improving quality of life and prolongation of life. Although median survival has been reported to be 18 to 24 months,[15] some patients experience long-term survival. Among patients treated with systemic chemotherapy at a single institution between 1973 and 1982, 263 patients (16.6%) achieved complete responses. Of those, 49 patients (3.1% of the total group) remained in complete remission for more than 5 years, and 26 patients (1.5%) were still in complete remission at 16 years.[16][Level of evidence: 3iiDiii]

Treatment of metastatic breast cancer will usually involve hormone therapy and/or chemotherapy with or without trastuzumab. Radiation therapy and/or surgery may be indicated for patients with limited symptomatic metastases. All patients with metastatic or recurrent breast cancer should be considered candidates for ongoing clinical trials.

Surgery

Surgery may be indicated for selected patients. Examples include patients who need mastectomies for fungating/painful breast lesions, parenchymal brain or vertebral metastases with spinal cord compression, isolated lung metastases, pathologic (or impending) fractures, or pleural or pericardial effusions. (Refer to the PDQ summary on Pain for more information; for information on pleural and pericardial effusions, refer to the PDQ summary on Cardiopulmonary Syndromes.)

Radiation therapy

Radiation therapy has a major role in the palliation of localized symptomatic metastases. Indications include painful bony metastases, unresectable central nervous system metastases (i.e., brain, meningeal, and spinal cord), bronchial obstruction, and fungating/painful breast or chest wall lesions. Radiation therapy should also be given following surgery for decompression of intracranial or spinal cord metastases and following fixation of pathologic fractures. Clinical trials (including the completed Radiation Therapy Oncology Group's trial [RTOG-9714]) are exploring the optimal radiation fractionation schedule. Strontium 89, a systemically administered radionuclide, can be administered for palliation of diffuse bony metastases.[17,18] (Refer to the PDQ summary on Pain for more information.)

Current Clinical Trials

Check for U.S. clinical trials from NCI's list of cancer clinical trials that are now accepting patients with stage IV breast cancer and recurrent breast cancer. The list of clinical trials can be further narrowed by location, drug, intervention, and other criteria.

General information about clinical trials is also available from the NCI Web site.

Systemic Therapy

Bisphosphonates

The use of bisphosphonates to reduce skeletal morbidity in patients with bone metastases should be considered.[19] Results of randomized trials of pamidronate and clodronate in patients with bony metastatic disease show decreased skeletal morbidity.[20,21,22][Level of evidence: 1iC] Zoledronate has been at least as effective as pamidronate.[23] (Refer to the PDQ summary on Pain for more information on bisphosphonates.)

Hormone therapy

Hormone therapy should generally be considered as initial treatment for a postmenopausal patient with newly diagnosed metastatic disease if the patient's tumor is ER-positive, PR-positive, or ER/PR-unknown. Hormone therapy is especially indicated if the patient's disease involves only bone and soft tissue and the patient has either not received adjuvant antiestrogen therapy or has been off such therapy for more than 1 year. While tamoxifen has been used in this setting for many years, several randomized trials suggest equivalent or superior response rates and progression-free survival (PFS) for the aromatase inhibitors compared to tamoxifen.[24,25,26][Level of evidence: 1iiDiii] In a meta-analysis that included randomized trials in patients who were receiving an aromatase inhibitor as either their first or second hormonal therapy for metastatic disease, those who were randomly assigned to a third-generation drug (anastrozole, letrozole, exemestane, or vorozole) lived longer (hazard ratio [HR] for death = 0.87; 95% confidence interval [CI], 0.82–0.93) than those who received standard therapy (tamoxifen or a progestational agent).[27][Level of evidence: 1iA]

Several randomized but underpowered trials have tried to determine if combined hormone therapy (luteinizing hormone-releasing hormone [LHRH] agonists + tamoxifen) is superior to either approach alone in premenopausal women. Results have been inconsistent.[28,29,30] The best study design compared buserelin (an LHRH agonist) versus tamoxifen versus the combination in 161 premenopausal women with hormone receptor–positive tumors.[31] Patients receiving buserelin and tamoxifen had a significantly improved median survival of 3.7 years compared with those receiving tamoxifen or buserelin who survived 2.9 and 2.5 years, respectively (P = .01).[31][Level of evidence: 1iiA] Very few women in this trial received adjuvant tamoxifen, which makes it difficult to assess whether these results are applicable to women who relapse after adjuvant tamoxifen.

Women whose tumors are ER-positive or unknown, with bone or soft tissue metastases only, who have received an antiestrogen within the past year, should be given second-line hormone therapy. Examples of second-line hormone therapy in postmenopausal women include selective aromatase inhibitors, such as anastrozole, letrozole, or exemestane; megestrol acetate; estrogens; androgens;[32,33,34,35,36,37,38,39,40] and the ER down-regulator, fulvestrant.[41,42] In comparison to megestrol acetate, all three currently available aromatase inhibitors have demonstrated, in prospective randomized trials, at least equal efficacy and better tolerability.[32,33,34,35,36,37,38,43] In a meta-analysis that included randomized trials of patients who were receiving an aromatase inhibitor as either their first or second hormonal therapy for metastatic disease, those who were randomly assigned to a third-generation drug (e.g., anastrozole, letrozole, exemestane, or vorozole) lived longer (HR for death 0.87; 95% CI, 0.82–0.93) than those who received standard therapy (tamoxifen or a progestational agent).[27][Level of evidence: 1iA] Two randomized trials that enrolled 400 and 451 patients who had progressed after receiving tamoxifen demonstrated that fulvestrant yielded similar results to anastrozole in terms of its impact on PFS.[44,45] The proper sequence of these therapies is currently not known.[43,46]

Premenopausal women should undergo oophorectomy (surgically, with external-beam radiation therapy or with an LHRH agonist).[47] Patients with lymphangitic pulmonary metastases, major liver involvement, and/or central nervous system involvement should not receive hormone therapy as a single modality. Patients with structural compromise of weight-bearing bones should be considered for surgical intervention and/or radiation in addition to systemic therapy. Patients with vertebral body involvement should be evaluated for impending cord compression even in the absence of neurologic symptoms. Increasing bone pain and increasing alkaline phosphatase within the first several weeks of hormone therapy does not necessarily imply disease progression.[48] Patients with extensive bony disease are at risk for the development of symptomatic hypercalcemia early in the course of hormone therapy.[48] Early failure (e.g., <6 months) on hormone therapy suggests that cytotoxic chemotherapy should be the next modality employed.

Trastuzumab

Approximately 25% of patients with breast cancer have tumors that overexpress HER2/neu.[49] Trastuzumab is a humanized monoclonal antibody that binds to the HER2/neu receptor.[49] In patients previously treated with cytotoxic chemotherapy whose tumors overexpress HER2/neu, administration of trastuzumab as a single agent resulted in a response rate of 21%.[50][Level of evidence: 3iiiDiv] In a prospective trial, patients with metastatic disease were randomly assigned to receive either chemotherapy alone (doxorubicin and cyclophosphamide or paclitaxel) or the same chemotherapy and trastuzumab. Patients treated with chemotherapy plus trastuzumab had an overall survival (OS) advantage as compared with those receiving chemotherapy alone (25.1 months vs. 20.3 months, P = .05).[51][Level of evidence: 1iiA] When combined with doxorubicin, trastuzumab is associated with significant cardiac toxicity.[52] Consequently, patients with metastatic breast cancer with substantial overexpression of HER2/neu are candidates for treatment with the combination of trastuzumab and paclitaxel or for clinical studies of trastuzumab combined with taxanes and other chemotherapeutic agents.[53]

In a randomized study of patients with metastatic breast cancer treated with trastuzumab, paclitaxel, and carboplatin, patients tolerated the combination well and had a longer time-to-progression with the addition of carboplatin to trastuzumab and paclitaxel.[54][Level of evidence: 1iDiii]

Lapatinib

Lapatinib is an orally administered tyrosine kinase inhibitor of both HER2/neu and the epidermal growth factor receptor. Lapatinib has shown activity in combination with capecitabine in patients who have HER2 -positive metastatic breast cancer that progressed after treatment with trastuzumab. A nonblinded randomized trial (GSK-EGF100151) compared the combination of capecitabine and lapatinib in 324 patients with locally advanced or metastatic disease that progressed after therapies that included anthracyclines, taxanes, and trastuzumab.[55] At the first planned interim analysis of the trial, a highly significant difference was found that favored the combination arm with respect to the primary study endpoint and time to progression (median time to progression 8.4 months vs. 4.4 months; HR = 0.49; 95% CI, 0.34–0.71; P < .001). There was no difference in OS (HR = 0.92; 95% CI, 0.58–1.46; P = .72).[55][Level of evidence: 1iiA] Patients on combination therapy were more likely to develop diarrhea, rash, and dyspepsia. No data on quality of life or treatment after progression are available. (For information on diarrhea, refer to the PDQ summary on Gastrointestinal Complications.)

A double-blind, randomized phase III study compared paclitaxel and lapatinib for first-line therapy in patients with metastatic breast cancer.[56] There was no benefit for patients with HER2/neu metastatic breast cancer. Specimens were evaluated retrospectively to determine HER2/neu status. When used with HER2/neu -positive patients, treatment with paclitaxel and lapatinib showed improvement in time to progression, event-free survival, response rate, and clinical benefit rate; OS did not increase. Toxicities, specifically alopecia, diarrhea, and rash were higher in the HER2/neu -positive lapatinib group. A series of adverse events were low and existed in both arms.[56][Level of evidence: 1iDiii]

Cytotoxic chemotherapy

Patients whose tumors have progressed on hormone therapy are candidates for cytotoxic chemotherapy. Patients with hormone receptor–negative tumors and those with visceral metastases are also candidates for cytotoxic agents.[57]

Single agents that have shown activity in metastatic breast cancer include the following:

Combination regimens that have shown activity in metastatic breast cancer:

  • CA: cyclophosphamide and doxorubicin.[71]
  • Docetaxel and doxorubicin.[72]
  • CAF: cyclophosphamide, doxorubicin, 5-fluorouracil.[73]
  • CMF: cyclophosphamide, methotrexate, 5-fluorouracil.[74]
  • Doxorubicin and paclitaxel.[75,76]
  • Docetaxel and capecitabine.[77]
  • Vinorelbine and epirubicin.[78]
  • Capecitabine and ixabepilone.[79]

Whether single-agent chemotherapy or combination chemotherapy is preferable for first-line treatment is unclear. An Eastern Cooperative Oncology Intergroup study (E-1193) randomly assigned patients to receive paclitaxel and doxorubicin given both as a combination and sequentially.[80] Although response rate and time-to-progression were both better for the combination, survival was the same in both groups.[80][Level of evidence: 1iiA][81,82] The rate of disease progression, the presence or absence of comorbid medical conditions, and physician/patient preference will influence the choice of therapy in individual patients. At this time, no data support the superiority of any particular regimen. Sequential use of single agents or combinations can be used for patients who relapse. Combinations of chemotherapy and hormone therapy have not shown an OS advantage over the sequential use of these agents.[15,83] A systematic review of 17 randomized trials found that the addition of one or more chemotherapy drugs to a chemotherapy regimen in the attempt to intensify the treatment improved tumor response but had no effect on OS.[84][Level of evidence: 1iiA]

The optimal treatment duration for patients with responsive or stable disease has been studied by several groups. For patients who attain a complete response to initial therapy, two randomized trials have shown a prolonged DFS from immediate treatment with a different chemotherapy regimen compared to observation with treatment upon relapse.[85,86][Level of evidence: 1iiA] Neither of these studies, however, showed an improvement in OS for patients who received immediate treatment, and in one of these studies,[86] survival was actually worse in the immediately treated group. Similarly, no difference in survival was noted when patients with partial response or stable disease after initial therapy were randomized to receive either a different chemotherapy versus observation [87] or a different chemotherapy regimen given at higher versus lower doses.[88][Level of evidence: 1iiA] These four studies indicate that different combination regimens of additional chemotherapy immediately following a patient's best response to an induction chemotherapy regimen does not improve OS. In view of the lack of a standard approach, patients requiring second-line regimens are good candidates for clinical trials.

The potential for doxorubicin-induced cardiotoxicity should be considered in the selection of chemotherapeutic regimens for an individual patient. Recognized risk factors for cardiac toxicity include advanced age, prior chest-wall radiation therapy, prior anthracycline exposure, hypertension, diabetes, and known underlying heart disease. The cardioprotective drug dexrazoxane has been shown to decrease the risk of doxorubicin-induced cardiac toxicity in patients in controlled studies. The use of this agent has permitted patients to receive greater cumulative doses of doxorubicin and allowed patients with cardiac risk factors to receive doxorubicin.[89,90,91,92] Dexrazoxane has a similar protective effect in patients receiving epirubicin.[93] The risks of cardiac toxicity may also be reduced by administering doxorubicin as a continuous intravenous infusion.[94]

Studies comparing high-dose chemotherapy with stem cell support to conventional chemotherapy in patients with metastatic disease indicate no OS or relapse-free survival benefit for patients receiving high-dose chemotherapy with stem cell support.[95,96][Level of evidence: 1iiA] In the absence of data suggesting a benefit from high-dose chemotherapy with stem cell support, this remains an area of clinical evaluation.[97,98]

Bevacizumab

Bevacizumab is a humanized monoclonal antibody directed against all isoforms of vascular endothelial growth factor-A. Its role in the treatment of metastatic breast cancer remains controversial. The efficacy and safety of bevacizumab as a second- and third-line treatment for patients with metastatic breast cancer were studied in a single, open-label, randomized trial.[99] The study enrolled 462 patients who had received prior anthracycline and taxane therapy and were randomly assigned to receive capecitabine with or without bevacizumab. The study failed to demonstrate a statistically significant effect on PFS (4.86 months vs. 4.17 months; HR = 0.98) or OS (15.1 months vs. 14.5 months).[99][Level of Evidence: 1iiA]

ECOG-2100 (NCT00028990), an open-label, randomized, phase III trial, demonstrated that the addition of bevacizumab to paclitaxel significantly prolonged median PFS compared with paclitaxel alone as the initial treatment for patients with metastatic breast cancer (11.8 months vs. 5.9 months; HR = 0.60; P <.001).[100][Level of Evidence: 1iiA] However, the addition of bevacizumab did not improve OS (26.7 months vs. 25.2 months, P = .16). Notably, patients treated on the bevacizumab-containing arm had significantly higher rates of severe hypertension, proteinuria, cerebrovascular ischemia, and infection.

The AVADO (NCT00333775) trial randomly assigned 736 patients to docetaxel plus either placebo or bevacizumab at 7.5 mg/kg or 15 mg/kg every 3 weeks as the initial treatment for patients with metastatic breast cancer. The combination of bevacizumab at 15 mg/kg, but not 7.5 mg/kg, with docetaxel modestly improved median PFS compared with placebo (10.1 months vs. 8.1 months) but did not improve OS (30.2 months vs. 31.9 months; P = .85).[101][Level of Evidence: 1iiA] Again, more toxicity was seen in patients in the bevacizumab-containing arms with significantly higher rates of bleeding and hypertension compared with the placebo arms.

Similarly, the RIBBON-1 (NCT00262067) trial randomly assigned 1,237 patients in a 2:1 fashion to standard chemotherapy plus bevacizumab or standard chemotherapy plus placebo.[102] Median PFS was longer for each bevacizumab-containing combination (Cape cohort: increased from 5.7 mo. to 8.6 mo.; HR = 0.69; 95% CI, 0.56–0.84; log-rank, P < .001; and Taxane/Anthracycline cohort: increased from 8.0 mo. to 9.2 mo.; HR = 0.64; 95% CI, 0.52–0.80; log-rank, P < .001).[102][Level of Evidence: 1iiA] However, no statistically significant differences in OS between the placebo- and bevacizumab-containing arms were observed. Toxicities associated with bevacizumab were similar to those seen in prior bevacizumab clinical trials.

In November 2011, based on the consistent finding that bevacizumab only modestly improved PFS but not OS, and given bevacizumab's considerable toxicity profile, the Food and Drug Administration revoked approval of bevacizumab for the treatment of metastatic breast cancer.

Current Clinical Trials

Check for U.S. clinical trials from NCI's list of cancer clinical trials that are now accepting patients with stage IIIB breast cancer, stage IIIC breast cancer, stage IV breast cancer, recurrent breast cancer and metastatic cancer. The list of clinical trials can be further narrowed by location, drug, intervention, and other criteria.

General information about clinical trials is also available from the NCI Web site.

References:

  1. Brito RA, Valero V, Buzdar AU, et al.: Long-term results of combined-modality therapy for locally advanced breast cancer with ipsilateral supraclavicular metastases: The University of Texas M.D. Anderson Cancer Center experience. J Clin Oncol 19 (3): 628-33, 2001.
  2. Ueno NT, Buzdar AU, Singletary SE, et al.: Combined-modality treatment of inflammatory breast carcinoma: twenty years of experience at M. D. Anderson Cancer Center. Cancer Chemother Pharmacol 40 (4): 321-9, 1997.
  3. Berg CD, Swain SM: Results of Concomitantly Administered Chemoradiation for Locally Advanced Noninflammatory Breast Cancer. Semin Radiat Oncol 4 (4): 226-235, 1994.
  4. Kuukasjärvi T, Kononen J, Helin H, et al.: Loss of estrogen receptor in recurrent breast cancer is associated with poor response to endocrine therapy. J Clin Oncol 14 (9): 2584-9, 1996.
  5. Perry MC, Kardinal CG, Korzun AH, et al.: Chemohormonal therapy in advanced carcinoma of the breast: Cancer and Leukemia Group B protocol 8081. J Clin Oncol 5 (10): 1534-45, 1987.
  6. Lichter AS, Lippman ME, Danforth DN Jr, et al.: Mastectomy versus breast-conserving therapy in the treatment of stage I and II carcinoma of the breast: a randomized trial at the National Cancer Institute. J Clin Oncol 10 (6): 976-83, 1992.
  7. Aberizk WJ, Silver B, Henderson IC, et al.: The use of radiotherapy for treatment of isolated locoregional recurrence of breast carcinoma after mastectomy. Cancer 58 (6): 1214-8, 1986.
  8. Abner AL, Recht A, Eberlein T, et al.: Prognosis following salvage mastectomy for recurrence in the breast after conservative surgery and radiation therapy for early-stage breast cancer. J Clin Oncol 11 (1): 44-8, 1993.
  9. Haffty BG, Fischer D, Beinfield M, et al.: Prognosis following local recurrence in the conservatively treated breast cancer patient. Int J Radiat Oncol Biol Phys 21 (2): 293-8, 1991.
  10. Leonard R, Hardy J, van Tienhoven G, et al.: Randomized, double-blind, placebo-controlled, multicenter trial of 6% miltefosine solution, a topical chemotherapy in cutaneous metastases from breast cancer. J Clin Oncol 19 (21): 4150-9, 2001.
  11. Schwaibold F, Fowble BL, Solin LJ, et al.: The results of radiation therapy for isolated local regional recurrence after mastectomy. Int J Radiat Oncol Biol Phys 21 (2): 299-310, 1991.
  12. Halverson KJ, Perez CA, Kuske RR, et al.: Survival following locoregional recurrence of breast cancer: univariate and multivariate analysis. Int J Radiat Oncol Biol Phys 23 (2): 285-91, 1992.
  13. Halverson KJ, Perez CA, Kuske RR, et al.: Isolated local-regional recurrence of breast cancer following mastectomy: radiotherapeutic management. Int J Radiat Oncol Biol Phys 19 (4): 851-8, 1990.
  14. Waeber M, Castiglione-Gertsch M, Dietrich D, et al.: Adjuvant therapy after excision and radiation of isolated postmastectomy locoregional breast cancer recurrence: definitive results of a phase III randomized trial (SAKK 23/82) comparing tamoxifen with observation. Ann Oncol 14 (8): 1215-21, 2003.
  15. Honig SF: Hormonal therapy and chemotherapy. In: Harris JR, Morrow M, Lippman ME, et al., eds.: Diseases of the Breast. Lippincott-Raven Publishers: Philadelphia, Pa, 1996, pp 669-734.
  16. Greenberg PA, Hortobagyi GN, Smith TL, et al.: Long-term follow-up of patients with complete remission following combination chemotherapy for metastatic breast cancer. J Clin Oncol 14 (8): 2197-205, 1996.
  17. Porter AT, McEwan AJ, Powe JE, et al.: Results of a randomized phase-III trial to evaluate the efficacy of strontium-89 adjuvant to local field external beam irradiation in the management of endocrine resistant metastatic prostate cancer. Int J Radiat Oncol Biol Phys 25 (5): 805-13, 1993.
  18. Quilty PM, Kirk D, Bolger JJ, et al.: A comparison of the palliative effects of strontium-89 and external beam radiotherapy in metastatic prostate cancer. Radiother Oncol 31 (1): 33-40, 1994.
  19. Hillner BE, Ingle JN, Chlebowski RT, et al.: American Society of Clinical Oncology 2003 update on the role of bisphosphonates and bone health issues in women with breast cancer. J Clin Oncol 21 (21): 4042-57, 2003.
  20. Paterson AH, Powles TJ, Kanis JA, et al.: Double-blind controlled trial of oral clodronate in patients with bone metastases from breast cancer. J Clin Oncol 11 (1): 59-65, 1993.
  21. Hortobagyi GN, Theriault RL, Lipton A, et al.: Long-term prevention of skeletal complications of metastatic breast cancer with pamidronate. Protocol 19 Aredia Breast Cancer Study Group. J Clin Oncol 16 (6): 2038-44, 1998.
  22. Powles T, Paterson A, McCloskey E, et al.: Reduction in bone relapse and improved survival with oral clodronate for adjuvant treatment of operable breast cancer [ISRCTN83688026]. Breast Cancer Res 8 (2): R13, 2006.
  23. Rosen LS, Gordon D, Kaminski M, et al.: Long-term efficacy and safety of zoledronic acid compared with pamidronate disodium in the treatment of skeletal complications in patients with advanced multiple myeloma or breast carcinoma: a randomized, double-blind, multicenter, comparative trial. Cancer 98 (8): 1735-44, 2003.
  24. Bonneterre J, Thürlimann B, Robertson JF, et al.: Anastrozole versus tamoxifen as first-line therapy for advanced breast cancer in 668 postmenopausal women: results of the Tamoxifen or Arimidex Randomized Group Efficacy and Tolerability study. J Clin Oncol 18 (22): 3748-57, 2000.
  25. Nabholtz JM, Buzdar A, Pollak M, et al.: Anastrozole is superior to tamoxifen as first-line therapy for advanced breast cancer in postmenopausal women: results of a North American multicenter randomized trial. Arimidex Study Group. J Clin Oncol 18 (22): 3758-67, 2000.
  26. Mouridsen H, Gershanovich M, Sun Y, et al.: Phase III study of letrozole versus tamoxifen as first-line therapy of advanced breast cancer in postmenopausal women: analysis of survival and update of efficacy from the International Letrozole Breast Cancer Group. J Clin Oncol 21 (11): 2101-9, 2003.
  27. Mauri D, Pavlidis N, Polyzos NP, et al.: Survival with aromatase inhibitors and inactivators versus standard hormonal therapy in advanced breast cancer: meta-analysis. J Natl Cancer Inst 98 (18): 1285-91, 2006.
  28. Boccardo F, Rubagotti A, Perrotta A, et al.: Ovarian ablation versus goserelin with or without tamoxifen in pre-perimenopausal patients with advanced breast cancer: results of a multicentric Italian study. Ann Oncol 5 (4): 337-42, 1994.
  29. Jonat W, Kaufmann M, Blamey RW, et al.: A randomised study to compare the effect of the luteinising hormone releasing hormone (LHRH) analogue goserelin with or without tamoxifen in pre- and perimenopausal patients with advanced breast cancer. Eur J Cancer 31A (2): 137-42, 1995.
  30. Klijn JG, Blamey RW, Boccardo F, et al.: Combined tamoxifen and luteinizing hormone-releasing hormone (LHRH) agonist versus LHRH agonist alone in premenopausal advanced breast cancer: a meta-analysis of four randomized trials. J Clin Oncol 19 (2): 343-53, 2001.
  31. Klijn JG, Beex LV, Mauriac L, et al.: Combined treatment with buserelin and tamoxifen in premenopausal metastatic breast cancer: a randomized study. J Natl Cancer Inst 92 (11): 903-11, 2000.
  32. Buzdar AU, Jones SE, Vogel CL, et al.: A phase III trial comparing anastrozole (1 and 10 milligrams), a potent and selective aromatase inhibitor, with megestrol acetate in postmenopausal women with advanced breast carcinoma. Arimidex Study Group. Cancer 79 (4): 730-9, 1997.
  33. Dombernowsky P, Smith I, Falkson G, et al.: Letrozole, a new oral aromatase inhibitor for advanced breast cancer: double-blind randomized trial showing a dose effect and improved efficacy and tolerability compared with megestrol acetate. J Clin Oncol 16 (2): 453-61, 1998.
  34. Jonat W, Howell A, Blomqvist C, et al.: A randomised trial comparing two doses of the new selective aromatase inhibitor anastrozole (Arimidex) with megestrol acetate in postmenopausal patients with advanced breast cancer. Eur J Cancer 32A (3): 404-12, 1996.
  35. Gershanovich M, Chaudri HA, Campos D, et al.: Letrozole, a new oral aromatase inhibitor: randomised trial comparing 2.5 mg daily, 0.5 mg daily and aminoglutethimide in postmenopausal women with advanced breast cancer. Letrozole International Trial Group (AR/BC3). Ann Oncol 9 (6): 639-45, 1998.
  36. Peethambaram PP, Ingle JN, Suman VJ, et al.: Randomized trial of diethylstilbestrol vs. tamoxifen in postmenopausal women with metastatic breast cancer. An updated analysis. Breast Cancer Res Treat 54 (2): 117-22, 1999.
  37. Kaufmann M, Bajetta E, Dirix LY, et al.: Exemestane is superior to megestrol acetate after tamoxifen failure in postmenopausal women with advanced breast cancer: results of a phase III randomized double-blind trial. The Exemestane Study Group. J Clin Oncol 18 (7): 1399-411, 2000.
  38. Kvinnsland S, Anker G, Dirix LY, et al.: High activity and tolerability demonstrated for exemestane in postmenopausal women with metastatic breast cancer who had previously failed on tamoxifen treatment. Eur J Cancer 36 (8): 976-82, 2000.
  39. Buzdar A, Douma J, Davidson N, et al.: Phase III, multicenter, double-blind, randomized study of letrozole, an aromatase inhibitor, for advanced breast cancer versus megestrol acetate. J Clin Oncol 19 (14): 3357-66, 2001.
  40. Gibson LJ, Dawson CK, Lawrence DH, et al.: Aromatase inhibitors for treatment of advanced breast cancer in postmenopausal women. Cochrane Database Syst Rev (1): CD003370, 2007.
  41. Howell A, Robertson JF, Abram P, et al.: Comparison of fulvestrant versus tamoxifen for the treatment of advanced breast cancer in postmenopausal women previously untreated with endocrine therapy: a multinational, double-blind, randomized trial. J Clin Oncol 22 (9): 1605-13, 2004.
  42. Perey L, Paridaens R, Hawle H, et al.: Clinical benefit of fulvestrant in postmenopausal women with advanced breast cancer and primary or acquired resistance to aromatase inhibitors: final results of phase II Swiss Group for Clinical Cancer Research Trial (SAKK 21/00). Ann Oncol 18 (1): 64-9, 2007.
  43. Henderson IC: A rose is no longer a rose. J Clin Oncol 20 (16): 3365-8, 2002.
  44. Osborne CK, Pippen J, Jones SE, et al.: Double-blind, randomized trial comparing the efficacy and tolerability of fulvestrant versus anastrozole in postmenopausal women with advanced breast cancer progressing on prior endocrine therapy: results of a North American trial. J Clin Oncol 20 (16): 3386-95, 2002.
  45. Howell A, Robertson JF, Quaresma Albano J, et al.: Fulvestrant, formerly ICI 182,780, is as effective as anastrozole in postmenopausal women with advanced breast cancer progressing after prior endocrine treatment. J Clin Oncol 20 (16): 3396-403, 2002.
  46. Flemming J, Madarnas Y, Franek JA: Fulvestrant for systemic therapy of locally advanced or metastatic breast cancer in postmenopausal women: a systematic review. Breast Cancer Res Treat 115 (2): 255-68, 2009.
  47. Bajetta E, Zilembo N, Buzzoni R, et al.: Goserelin in premenopausal advanced breast cancer: clinical and endocrine evaluation of responsive patients. Oncology 51 (3): 262-9, 1994 May-Jun.
  48. Clarysse A: Hormone-induced tumor flare. Eur J Cancer Clin Oncol 21 (5): 545-7, 1985.
  49. Pegram MD, Pauletti G, Slamon DJ: HER-2/neu as a predictive marker of response to breast cancer therapy. Breast Cancer Res Treat 52 (1-3): 65-77, 1998.
  50. Cobleigh MA, Vogel CL, Tripathy D, et al.: Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 17 (9): 2639-48, 1999.
  51. Slamon DJ, Leyland-Jones B, Shak S, et al.: Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344 (11): 783-92, 2001.
  52. Seidman A, Hudis C, Pierri MK, et al.: Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol 20 (5): 1215-21, 2002.
  53. Burstein HJ, Kuter I, Campos SM, et al.: Clinical activity of trastuzumab and vinorelbine in women with HER2-overexpressing metastatic breast cancer. J Clin Oncol 19 (10): 2722-30, 2001.
  54. Robert N, Leyland-Jones B, Asmar L, et al.: Randomized phase III study of trastuzumab, paclitaxel, and carboplatin compared with trastuzumab and paclitaxel in women with HER-2-overexpressing metastatic breast cancer. J Clin Oncol 24 (18): 2786-92, 2006.
  55. Geyer CE, Forster J, Lindquist D, et al.: Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 355 (26): 2733-43, 2006.
  56. Di Leo A, Gomez HL, Aziz Z, et al.: Phase III, double-blind, randomized study comparing lapatinib plus paclitaxel with placebo plus paclitaxel as first-line treatment for metastatic breast cancer. J Clin Oncol 26 (34): 5544-52, 2008.
  57. Wilcken N, Dear R: Chemotherapy in metastatic breast cancer: A summary of all randomised trials reported 2000-2007. Eur J Cancer 44 (15): 2218-25, 2008.
  58. Ranson MR, Carmichael J, O'Byrne K, et al.: Treatment of advanced breast cancer with sterically stabilized liposomal doxorubicin: results of a multicenter phase II trial. J Clin Oncol 15 (10): 3185-91, 1997.
  59. Harris L, Batist G, Belt R, et al.: Liposome-encapsulated doxorubicin compared with conventional doxorubicin in a randomized multicenter trial as first-line therapy of metastatic breast carcinoma. Cancer 94 (1): 25-36, 2002.
  60. Keller AM, Mennel RG, Georgoulias VA, et al.: Randomized phase III trial of pegylated liposomal doxorubicin versus vinorelbine or mitomycin C plus vinblastine in women with taxane-refractory advanced breast cancer. J Clin Oncol 22 (19): 3893-901, 2004.
  61. Sparano JA, Makhson AN, Semiglazov VF, et al.: Pegylated liposomal doxorubicin plus docetaxel significantly improves time to progression without additive cardiotoxicity compared with docetaxel monotherapy in patients with advanced breast cancer previously treated with neoadjuvant-adjuvant anthracycline therapy: results from a randomized phase III study. J Clin Oncol 27 (27): 4522-9, 2009.
  62. Seidman AD, Berry D, Cirrincione C, et al.: Randomized phase III trial of weekly compared with every-3-weeks paclitaxel for metastatic breast cancer, with trastuzumab for all HER-2 overexpressors and random assignment to trastuzumab or not in HER-2 nonoverexpressors: final results of Cancer and Leukemia Group B protocol 9840. J Clin Oncol 26 (10): 1642-9, 2008.
  63. Gonzalez-Angulo AM, Hortobagyi GN: Optimal schedule of paclitaxel: weekly is better. J Clin Oncol 26 (10): 1585-7, 2008.
  64. Gradishar WJ, Tjulandin S, Davidson N, et al.: Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol 23 (31): 7794-803, 2005.
  65. Ibrahim NK, Samuels B, Page R, et al.: Multicenter phase II trial of ABI-007, an albumin-bound paclitaxel, in women with metastatic breast cancer. J Clin Oncol 23 (25): 6019-26, 2005.
  66. Blum JL, Jones SE, Buzdar AU, et al.: Multicenter phase II study of capecitabine in paclitaxel-refractory metastatic breast cancer. J Clin Oncol 17 (2): 485-93, 1999.
  67. Blum JL, Dieras V, Lo Russo PM, et al.: Multicenter, Phase II study of capecitabine in taxane-pretreated metastatic breast carcinoma patients. Cancer 92 (7): 1759-68, 2001.
  68. Venturini M, Paridaens R, Rossner D, et al.: An open-label, multicenter study of outpatient capecitabine monotherapy in 631 patients with pretreated advanced breast cancer. Oncology 72 (1-2): 51-7, 2007.
  69. Degardin M, Bonneterre J, Hecquet B, et al.: Vinorelbine (navelbine) as a salvage treatment for advanced breast cancer. Ann Oncol 5 (5): 423-6, 1994.
  70. Carmichael J, Walling J: Advanced breast cancer: investigational role of gemcitabine. Eur J Cancer 33 (Suppl 1): S27-30, 1997.
  71. Tranum BL, McDonald B, Thigpen T, et al.: Adriamycin combinations in advanced breast cancer. A Southwest Oncology Group Study. Cancer 49 (5): 835-9, 1982.
  72. Misset JL, Dieras V, Gruia G, et al.: Dose-finding study of docetaxel and doxorubicin in first-line treatment of patients with metastatic breast cancer. Ann Oncol 10 (5): 553-60, 1999.
  73. Buzdar AU, Kau SW, Smith TL, et al.: Ten-year results of FAC adjuvant chemotherapy trial in breast cancer. Am J Clin Oncol 12 (2): 123-8, 1989.
  74. Tormey DC, Gelman R, Band PR, et al.: Comparison of induction chemotherapies for metastatic breast cancer. An Eastern Cooperative Oncology Group Trial. Cancer 50 (7): 1235-44, 1982.
  75. Jassem J, Pienkowski T, Pluzanska A, et al.: Doxorubicin and paclitaxel versus fluorouracil, doxorubicin, and cyclophosphamide as first-line therapy for women with metastatic breast cancer: final results of a randomized phase III multicenter trial. J Clin Oncol 19 (6): 1707-15, 2001.
  76. Biganzoli L, Cufer T, Bruning P, et al.: Doxorubicin and paclitaxel versus doxorubicin and cyclophosphamide as first-line chemotherapy in metastatic breast cancer: The European Organization for Research and Treatment of Cancer 10961 Multicenter Phase III Trial. J Clin Oncol 20 (14): 3114-21, 2002.
  77. O'Shaughnessy J, Miles D, Vukelja S, et al.: Superior survival with capecitabine plus docetaxel combination therapy in anthracycline-pretreated patients with advanced breast cancer: phase III trial results. J Clin Oncol 20 (12): 2812-23, 2002.
  78. Serin D, Verrill M, Jones A, et al.: Vinorelbine alternating oral and intravenous plus epirubicin in first-line therapy of metastatic breast cancer: results of a multicentre phase II study. Br J Cancer 92 (11): 1989-96, 2005.
  79. Thomas ES, Gomez HL, Li RK, et al.: Ixabepilone plus capecitabine for metastatic breast cancer progressing after anthracycline and taxane treatment. J Clin Oncol 25 (33): 5210-7, 2007.
  80. Sledge GW, Neuberg D, Bernardo P, et al.: Phase III trial of doxorubicin, paclitaxel, and the combination of doxorubicin and paclitaxel as front-line chemotherapy for metastatic breast cancer: an intergroup trial (E1193). J Clin Oncol 21 (4): 588-92, 2003.
  81. Seidman AD: Sequential single-agent chemotherapy for metastatic breast cancer: therapeutic nihilism or realism? J Clin Oncol 21 (4): 577-9, 2003.
  82. Overmoyer B: Combination chemotherapy for metastatic breast cancer: reaching for the cure. J Clin Oncol 21 (4): 580-2, 2003.
  83. Perez EA: Current management of metastatic breast cancer. Semin Oncol 26 (4 Suppl 12): 1-10, 1999.
  84. Jones D, Ghersi D, Wilcken N: Addition of drug/s to a chemotherapy regimen for metastatic breast cancer. Cochrane Database Syst Rev 3: CD003368, 2006.
  85. Falkson G, Gelman RS, Pandya KJ, et al.: Eastern Cooperative Oncology Group randomized trials of observation versus maintenance therapy for patients with metastatic breast cancer in complete remission following induction treatment. J Clin Oncol 16 (5): 1669-76, 1998.
  86. Peters WP, Jones RB, Vrendenburgh J, et al.: A large, prospective, randomized trial of high-dose combination alkylating agents (CPB) with autologous cellular support (ABMS) as consolidation for patients with metastatic breast cancer achieving complete remission after intensive doxorubicin-based induction therapy (AFM). [Abstract] Proceedings of the American Society of Clinical Oncology 15: A-149, 121, 1996.
  87. Muss HB, Case LD, Richards F 2nd, et al.: Interrupted versus continuous chemotherapy in patients with metastatic breast cancer. The Piedmont Oncology Association. N Engl J Med 325 (19): 1342-8, 1991.
  88. Falkson G, Gelman RS, Glick J, et al.: Metastatic breast cancer: higher versus low dose maintenance treatment when only a partial response or a no change status is obtained following doxorubicin induction treatment. An Eastern Cooperative Oncology Group study. Ann Oncol 3 (9): 768-70, 1992.
  89. Swain SM, Whaley FS, Gerber MC, et al.: Delayed administration of dexrazoxane provides cardioprotection for patients with advanced breast cancer treated with doxorubicin-containing therapy. J Clin Oncol 15 (4): 1333-40, 1997.
  90. Swain SM, Whaley FS, Gerber MC, et al.: Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. J Clin Oncol 15 (4): 1318-32, 1997.
  91. Hensley ML, Schuchter LM, Lindley C, et al.: American Society of Clinical Oncology clinical practice guidelines for the use of chemotherapy and radiotherapy protectants. J Clin Oncol 17 (10): 3333-55, 1999.
  92. Marty M, Espié M, Llombart A, et al.: Multicenter randomized phase III study of the cardioprotective effect of dexrazoxane (Cardioxane) in advanced/metastatic breast cancer patients treated with anthracycline-based chemotherapy. Ann Oncol 17 (4): 614-22, 2006.
  93. Venturini M, Michelotti A, Del Mastro L, et al.: Multicenter randomized controlled clinical trial to evaluate cardioprotection of dexrazoxane versus no cardioprotection in women receiving epirubicin chemotherapy for advanced breast cancer. J Clin Oncol 14 (12): 3112-20, 1996.
  94. Hortobagyi GN, Frye D, Buzdar AU, et al.: Decreased cardiac toxicity of doxorubicin administered by continuous intravenous infusion in combination chemotherapy for metastatic breast carcinoma. Cancer 63 (1): 37-45, 1989.
  95. Stadtmauer EA, O'Neill A, Goldstein LJ, et al.: Conventional-dose chemotherapy compared with high-dose chemotherapy plus autologous hematopoietic stem-cell transplantation for metastatic breast cancer. Philadelphia Bone Marrow Transplant Group. N Engl J Med 342 (15): 1069-76, 2000.
  96. Schmid P, Schippinger W, Nitsch T, et al.: Up-front tandem high-dose chemotherapy compared with standard chemotherapy with doxorubicin and paclitaxel in metastatic breast cancer: results of a randomized trial. J Clin Oncol 23 (3): 432-40, 2005.
  97. Berry DA, Broadwater G, Klein JP, et al.: High-dose versus standard chemotherapy in metastatic breast cancer: comparison of Cancer and Leukemia Group B trials with data from the Autologous Blood and Marrow Transplant Registry. J Clin Oncol 20 (3): 743-50, 2002.
  98. Farquhar C, Marjoribanks J, Basser R, et al.: High dose chemotherapy and autologous bone marrow or stem cell transplantation versus conventional chemotherapy for women with metastatic breast cancer. Cochrane Database Syst Rev (3): CD003142, 2005.
  99. Miller KD, Chap LI, Holmes FA, et al.: Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J Clin Oncol 23 (4): 792-9, 2005.
  100. Miller K, Wang M, Gralow J, et al.: Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 357 (26): 2666-76, 2007.
  101. Miles DW, Chan A, Dirix LY, et al.: Phase III study of bevacizumab plus docetaxel compared with placebo plus docetaxel for the first-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol 28 (20): 3239-47, 2010.
  102. Robert NJ, Diéras V, Glaspy J, et al.: RIBBON-1: randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer. J Clin Oncol 29 (10): 1252-60, 2011.
eMedicineHealth Public Information from the National Cancer Institute

This information is produced and provided by the National Cancer Institute (NCI). The information in this topic may have changed since it was written. For the most current information, contact the National Cancer Institute via the Internet web site at http://cancer.gov or call 1-800-4-CANCER

This information is not intended to replace the advice of a doctor. Healthwise disclaims any liability for the decisions you make based on this information.

Some material in CancerNet™ is from copyrighted publications of the respective copyright claimants. Users of CancerNet™ are referred to the publication data appearing in the bibliographic citations, as well as to the copyright notices appearing in the original publication, all of which are hereby incorporated by reference.





Medical Dictionary