Font Size

Childhood Acute Myeloid Leukemia Treatment (Professional) (cont.)

Treatment Overview for Acute Myeloid Leukemia (AML)

The mainstay of the therapeutic approach is systemically administered combination chemotherapy.[1] Future approaches involving risk-group stratification and biologically targeted therapies are being tested to improve antileukemic treatment while sparing normal tissues.[2] Optimal treatment of acute myeloid leukemia (AML) requires control of bone marrow and systemic disease. Treatment of the central nervous system (CNS), usually with intrathecal (IT) medication, is a component of most pediatric AML protocols but has not yet been shown to contribute directly to an improvement in survival. CNS irradiation is not necessary in patients either as prophylaxis or for those presenting with cerebrospinal fluid leukemia that clears with IT and systemic chemotherapy.

Treatment is ordinarily divided into two phases: (1) induction (to attain remission), and (2) postremission consolidation/intensification. Postremission therapy may consist of varying numbers of courses of intensive chemotherapy and/or allogeneic hematopoietic stem cell transplantation (HSCT). For example, ongoing trials of the Children's Oncology Group (COG) and the United Kingdom Medical Research Council (MRC) utilize similar chemotherapy regimens consisting of two courses of induction chemotherapy followed by two additional courses of intensification chemotherapy.[3,4]

Maintenance therapy is not part of most pediatric AML protocols as two randomized clinical trials failed to show a benefit for maintenance chemotherapy.[5,6] The exception to this generalization is acute promyelocytic leukemia (APL), for which maintenance therapy has been shown to improve event-free survival and overall survival (OS).[7]

Treatment of AML is usually associated with severe and protracted myelosuppression along with other associated complications. Treatment with hematopoietic growth factors (granulocyte-macrophage colony-stimulating factor [GM-CSF] and granulocyte colony-stimulating factor [G-CSF]) has been used in an attempt to reduce the toxicity associated with severe myelosuppression but does not influence ultimate outcome.[8] Virtually all adult randomized trials of hematopoietic growth factors (GM-CSF and G-CSF) have demonstrated significant reduction in the time to neutrophil recovery,[9,10,11,12] but varying degrees of reduction in morbidity and little, if any, effect on mortality.[8] The BFM 98 study confirmed a lack of benefit for the use of G-CSF in a randomized pediatric AML trial.[13]

Because of the intensity of therapy utilized to treat AML, children with this disease must have their care coordinated by specialists in pediatric oncology, and they must be treated in cancer centers or hospitals with the necessary supportive care facilities (e.g., to administer specialized blood products; to manage infectious complications; to provide pediatric intensive care; and to provide emotional and developmental support). Approximately one-half of the remission induction failures are due to resistant disease and the other half are due to toxic deaths. For example, in the MRC 10 and 12 AML trials, there was a 4% resistant disease rate in addition to a 4% induction death rate.[3] With increasing rates of survival for children treated for AML comes an increased awareness of long-term sequelae of various treatments. For children who receive intensive chemotherapy, including anthracyclines, continued monitoring of cardiac function is critical. Periodic renal and auditory examinations are also suggested. In addition, total-body irradiation before HSCT increases the risk of growth failure, gonadal and thyroid dysfunction, and cataract formation.[14]

Prognostic Factors in Childhood AML

Prognostic factors in childhood AML have been identified and can be categorized as follows:

  • Age: Several reports published since 2000 have identified older age as being an adverse prognostic factor.[4,15,16,17,18] The age effect is not large, but there is consistency in the observation that adolescents have a somewhat poorer outcome than younger children.
  • Race/Ethnicity: In both the Children's Cancer Group (CCG) CCG-2891 and COG-2961 (CCG-2961) studies, Caucasian children had higher OS rates than African American and Hispanic children.[17,19] A trend for lower survival rates for African American children compared with Caucasian children was also observed in children treated on St. Jude Children's Research Hospital AML clinical trials.[20]
  • Down syndrome: For children with Down syndrome who develop AML, outcome is generally favorable.[21] The prognosis is particularly good (event-free survival exceeding 80%) in children aged 4 years or younger at diagnosis, the age group that accounts for the vast majority of Down syndrome patients with AML.[22,23]
  • Body mass index (BMI): In the COG-2961 (CCG-2961) study, obesity (BMI more than 95th percentile for age) was predictive of inferior survival.[17,24] Inferior survival was attributable to early treatment-related mortality that was primarily due to infectious complications.[24]
  • White blood cell (WBC) count: WBC count at diagnosis has been consistently noted to be inversely related to survival.[4,25,26]
  • FAB subtype: Associations between FAB subtype and prognosis have been more variable. The M3 (APL) subtype has a favorable outcome in studies utilizing all-trans retinoic acid in combination with chemotherapy.[27,28,29] Some studies have indicated a relatively poor outcome for M7 (megakaryocytic leukemia) in patients without Down syndrome,[21,30] though reports suggest an intermediate prognosis for this group of patients when contemporary treatment approaches are used.[3,31] The M0, or minimally differentiated subtype, has been associated with a poor outcome.[32]
  • CNS disease: The presence of CNS disease at diagnosis has not been shown to affect OS; however, it may be associated with an increased risk of isolated CNS relapse.[33]
  • Cytogenetic and molecular characteristics: Cytogenetic and molecular characteristics are also associated with prognosis. (Refer to the Cytogenetic evaluation and molecular abnormalities section in the Classification of Pediatric Myeloid Malignancies subsection of this summary for detailed information.) Cytogenetic and molecular characteristics that are used in clinical trials for treatment assignment include the following:
    • Favorable: inv(16)/t(16;16) and t(8;21), t(15;17), biallelic CEBPA mutations, and NPM1 mutations.
    • Unfavorable: monosomy 7, monosomy 5/del(5q), 3q abnormalities, and FLT3-ITD with high-allelic ratio.[34]
  • Response to therapy/minimal residual disease (MRD): Early response to therapy, generally measured after the first course of induction therapy, is predictive of outcome and can be assessed either by standard morphologic examination of bone marrow,[25,35] by cytogenetic analysis,[36] or by more sophisticated techniques to identify MRD.[37,38,39] Multiple groups have shown that the level of MRD after one course of induction therapy is an independent predictor of prognosis.[37,39,40]

    Molecular approaches to assessing MRD in AML (e.g., using quantitative reverse transcriptase–polymerase chain reaction [RT–PCR]) have been challenging to apply because of the genomic heterogeneity of pediatric AML and the instability of some genomic alterations. However, there has been success with these approaches as evidenced by the demonstration that the persistence of the PML-RARA fusion product in APL is significantly associated with a high risk of relapse, and that early therapeutic intervention prior to morphologic relapse may improve outcome.[41,42] Similarly, quantitative RT–PCR detection of AML1-ETO fusion transcripts can effectively predict higher risk of relapse for patients in clinical remission.[43,44,45] Other molecular alterations such as NPM1 mutations [46] and CBFB-MYH11 fusion transcripts [47] have also been successfully employed as leukemia-specific molecular markers in MRD assays, and for these alterations the level of MRD has shown prognostic significance. The presence of FLT3-ITD has been shown to be discordant between diagnosis and relapse, although when its presence persists, it can be useful in detecting residual leukemia.[48]

    Flow cytometric methods have been used for MRD detection and can detect leukemic blasts based on the expression of aberrant surface antigens that differ from the pattern observed in normal progenitors. A CCG study of 252 pediatric patients with AML in morphologic remission demonstrated that MRD as assessed by flow cytometry was the strongest prognostic factor predicting outcome in a multivariate analysis.[37] Other reports have confirmed both the utility of flow cytometric methods for MRD detection in the pediatric AML setting and the prognostic significance of MRD at various time points after treatment initiation.[39,40]

Risk classification systems under clinical evaluation

Risk classification for treatment assignment on the COG-AAML1031 study is based on cytogenetics, molecular markers, and MRD postinduction I, with patients being divided into a low-risk or high-risk group as follows:

The low-risk group represents about 73% of patients, has a predicted OS of approximately 75%, and is defined by the following:

  • Inv(16), t(8;21), nucleophosmin (NPM) mutations, or CEBPA mutations with any MRD status.
  • Standard-risk cytogenetics with negative MRD at end of Induction I.

The high-risk group represents the remaining 27% of patients, has a predicted OS less than 35%, and is defined by the following:

  • High allelic ratio FLT3/ITD+ with any MRD status.
  • Monosomy 7 with any MRD status.
  • del(5q) with any MRD status.
  • Standard-risk cytogenetics with positive MRD at end of Induction I.

The high-risk group of patients will be offered transplantation in first remission with the most appropriate available donor. Patients in the low-risk group will only be offered transplantation in second complete remission.[49]


  1. Loeb DM, Arceci RJ: What is the optimal therapy for childhood AML? Oncology (Huntingt) 16 (8): 1057-66; discussion 1066, 1068-70, 2002.
  2. Arceci RJ: Progress and controversies in the treatment of pediatric acute myelogenous leukemia. Curr Opin Hematol 9 (4): 353-60, 2002.
  3. Hann IM, Webb DK, Gibson BE, et al.: MRC trials in childhood acute myeloid leukaemia. Ann Hematol 83 (Suppl 1): S108-12, 2004.
  4. Gibson BE, Webb DK, Howman AJ, et al.: Results of a randomized trial in children with Acute Myeloid Leukaemia: medical research council AML12 trial. Br J Haematol 155 (3): 366-76, 2011.
  5. Wells RJ, Woods WG, Buckley JD, et al.: Treatment of newly diagnosed children and adolescents with acute myeloid leukemia: a Childrens Cancer Group study. J Clin Oncol 12 (11): 2367-77, 1994.
  6. Perel Y, Auvrignon A, Leblanc T, et al.: Impact of addition of maintenance therapy to intensive induction and consolidation chemotherapy for childhood acute myeloblastic leukemia: results of a prospective randomized trial, LAME 89/91. Leucámie Aiqüe Myéloïde Enfant. J Clin Oncol 20 (12): 2774-82, 2002.
  7. Fenaux P, Chastang C, Chevret S, et al.: A randomized comparison of all transretinoic acid (ATRA) followed by chemotherapy and ATRA plus chemotherapy and the role of maintenance therapy in newly diagnosed acute promyelocytic leukemia. The European APL Group. Blood 94 (4): 1192-200, 1999.
  8. Ozer H, Armitage JO, Bennett CL, et al.: 2000 update of recommendations for the use of hematopoietic colony-stimulating factors: evidence-based, clinical practice guidelines. American Society of Clinical Oncology Growth Factors Expert Panel. J Clin Oncol 18 (20): 3558-85, 2000.
  9. Büchner T, Hiddemann W, Koenigsmann M, et al.: Recombinant human granulocyte-macrophage colony-stimulating factor after chemotherapy in patients with acute myeloid leukemia at higher age or after relapse. Blood 78 (5): 1190-7, 1991.
  10. Ohno R, Tomonaga M, Kobayashi T, et al.: Effect of granulocyte colony-stimulating factor after intensive induction therapy in relapsed or refractory acute leukemia. N Engl J Med 323 (13): 871-7, 1990.
  11. Heil G, Hoelzer D, Sanz MA, et al.: A randomized, double-blind, placebo-controlled, phase III study of filgrastim in remission induction and consolidation therapy for adults with de novo acute myeloid leukemia. The International Acute Myeloid Leukemia Study Group. Blood 90 (12): 4710-8, 1997.
  12. Godwin JE, Kopecky KJ, Head DR, et al.: A double-blind placebo-controlled trial of granulocyte colony-stimulating factor in elderly patients with previously untreated acute myeloid leukemia: a Southwest oncology group study (9031). Blood 91 (10): 3607-15, 1998.
  13. Lehrnbecher T, Zimmermann M, Reinhardt D, et al.: Prophylactic human granulocyte colony-stimulating factor after induction therapy in pediatric acute myeloid leukemia. Blood 109 (3): 936-43, 2007.
  14. Leung W, Hudson MM, Strickland DK, et al.: Late effects of treatment in survivors of childhood acute myeloid leukemia. J Clin Oncol 18 (18): 3273-9, 2000.
  15. Webb DK, Harrison G, Stevens RF, et al.: Relationships between age at diagnosis, clinical features, and outcome of therapy in children treated in the Medical Research Council AML 10 and 12 trials for acute myeloid leukemia. Blood 98 (6): 1714-20, 2001.
  16. Razzouk BI, Estey E, Pounds S, et al.: Impact of age on outcome of pediatric acute myeloid leukemia: a report from 2 institutions. Cancer 106 (11): 2495-502, 2006.
  17. Lange BJ, Smith FO, Feusner J, et al.: Outcomes in CCG-2961, a children's oncology group phase 3 trial for untreated pediatric acute myeloid leukemia: a report from the children's oncology group. Blood 111 (3): 1044-53, 2008.
  18. Creutzig U, Büchner T, Sauerland MC, et al.: Significance of age in acute myeloid leukemia patients younger than 30 years: a common analysis of the pediatric trials AML-BFM 93/98 and the adult trials AMLCG 92/99 and AMLSG HD93/98A. Cancer 112 (3): 562-71, 2008.
  19. Aplenc R, Alonzo TA, Gerbing RB, et al.: Ethnicity and survival in childhood acute myeloid leukemia: a report from the Children's Oncology Group. Blood 108 (1): 74-80, 2006.
  20. Rubnitz JE, Lensing S, Razzouk BI, et al.: Effect of race on outcome of white and black children with acute myeloid leukemia: the St. Jude experience. Pediatr Blood Cancer 48 (1): 10-5, 2007.
  21. Lange BJ, Kobrinsky N, Barnard DR, et al.: Distinctive demography, biology, and outcome of acute myeloid leukemia and myelodysplastic syndrome in children with Down syndrome: Children's Cancer Group Studies 2861 and 2891. Blood 91 (2): 608-15, 1998.
  22. Creutzig U, Reinhardt D, Diekamp S, et al.: AML patients with Down syndrome have a high cure rate with AML-BFM therapy with reduced dose intensity. Leukemia 19 (8): 1355-60, 2005.
  23. Massey GV, Zipursky A, Chang MN, et al.: A prospective study of the natural history of transient leukemia (TL) in neonates with Down syndrome (DS): Children's Oncology Group (COG) study POG-9481. Blood 107 (12): 4606-13, 2006.
  24. Lange BJ, Gerbing RB, Feusner J, et al.: Mortality in overweight and underweight children with acute myeloid leukemia. JAMA 293 (2): 203-11, 2005.
  25. Creutzig U, Zimmermann M, Ritter J, et al.: Definition of a standard-risk group in children with AML. Br J Haematol 104 (3): 630-9, 1999.
  26. Chang M, Raimondi SC, Ravindranath Y, et al.: Prognostic factors in children and adolescents with acute myeloid leukemia (excluding children with Down syndrome and acute promyelocytic leukemia): univariate and recursive partitioning analysis of patients treated on Pediatric Oncology Group (POG) Study 8821. Leukemia 14 (7): 1201-7, 2000.
  27. de Botton S, Coiteux V, Chevret S, et al.: Outcome of childhood acute promyelocytic leukemia with all-trans-retinoic acid and chemotherapy. J Clin Oncol 22 (8): 1404-12, 2004.
  28. Testi AM, Biondi A, Lo Coco F, et al.: GIMEMA-AIEOPAIDA protocol for the treatment of newly diagnosed acute promyelocytic leukemia (APL) in children. Blood 106 (2): 447-53, 2005.
  29. Ortega JJ, Madero L, Martín G, et al.: Treatment with all-trans retinoic acid and anthracycline monochemotherapy for children with acute promyelocytic leukemia: a multicenter study by the PETHEMA Group. J Clin Oncol 23 (30): 7632-40, 2005.
  30. Athale UH, Razzouk BI, Raimondi SC, et al.: Biology and outcome of childhood acute megakaryoblastic leukemia: a single institution's experience. Blood 97 (12): 3727-32, 2001.
  31. Reinhardt D, Diekamp S, Langebrake C, et al.: Acute megakaryoblastic leukemia in children and adolescents, excluding Down's syndrome: improved outcome with intensified induction treatment. Leukemia 19 (8): 1495-6, 2005.
  32. Barbaric D, Alonzo TA, Gerbing RB, et al.: Minimally differentiated acute myeloid leukemia (FAB AML-M0) is associated with an adverse outcome in children: a report from the Children's Oncology Group, studies CCG-2891 and CCG-2961. Blood 109 (6): 2314-21, 2007.
  33. Johnston DL, Alonzo TA, Gerbing RB, et al.: The presence of central nervous system disease at diagnosis in pediatric acute myeloid leukemia does not affect survival: a Children's Oncology Group study. Pediatr Blood Cancer 55 (3): 414-20, 2010.
  34. Lugthart S, Gröschel S, Beverloo HB, et al.: Clinical, molecular, and prognostic significance of WHO type inv(3)(q21q26.2)/t(3;3)(q21;q26.2) and various other 3q abnormalities in acute myeloid leukemia. J Clin Oncol 28 (24): 3890-8, 2010.
  35. Wheatley K, Burnett AK, Goldstone AH, et al.: A simple, robust, validated and highly predictive index for the determination of risk-directed therapy in acute myeloid leukaemia derived from the MRC AML 10 trial. United Kingdom Medical Research Council's Adult and Childhood Leukaemia Working Parties. Br J Haematol 107 (1): 69-79, 1999.
  36. Marcucci G, Mrózek K, Ruppert AS, et al.: Abnormal cytogenetics at date of morphologic complete remission predicts short overall and disease-free survival, and higher relapse rate in adult acute myeloid leukemia: results from Cancer and Leukemia Group B study 8461. J Clin Oncol 22 (12): 2410-8, 2004.
  37. Sievers EL, Lange BJ, Alonzo TA, et al.: Immunophenotypic evidence of leukemia after induction therapy predicts relapse: results from a prospective Children's Cancer Group study of 252 patients with acute myeloid leukemia. Blood 101 (9): 3398-406, 2003.
  38. Weisser M, Kern W, Rauhut S, et al.: Prognostic impact of RT-PCR-based quantification of WT1 gene expression during MRD monitoring of acute myeloid leukemia. Leukemia 19 (8): 1416-23, 2005.
  39. van der Velden VH, van der Sluijs-Geling A, Gibson BE, et al.: Clinical significance of flowcytometric minimal residual disease detection in pediatric acute myeloid leukemia patients treated according to the DCOG ANLL97/MRC AML12 protocol. Leukemia 24 (9): 1599-606, 2010.
  40. Rubnitz JE, Inaba H, Dahl G, et al.: Minimal residual disease-directed therapy for childhood acute myeloid leukaemia: results of the AML02 multicentre trial. Lancet Oncol 11 (6): 543-52, 2010.
  41. Diverio D, Rossi V, Avvisati G, et al.: Early detection of relapse by prospective reverse transcriptase-polymerase chain reaction analysis of the PML/RARalpha fusion gene in patients with acute promyelocytic leukemia enrolled in the GIMEMA-AIEOP multicenter "AIDA" trial. GIMEMA-AIEOP Multicenter "AIDA" Trial. Blood 92 (3): 784-9, 1998.
  42. Martinelli G, Ottaviani E, Testoni N, et al.: Disappearance of PML/RAR alpha acute promyelocytic leukemia-associated transcript during consolidation chemotherapy. Haematologica 83 (11): 985-8, 1998.
  43. Buonamici S, Ottaviani E, Testoni N, et al.: Real-time quantitation of minimal residual disease in inv(16)-positive acute myeloid leukemia may indicate risk for clinical relapse and may identify patients in a curable state. Blood 99 (2): 443-9, 2002.
  44. Viehmann S, Teigler-Schlegel A, Bruch J, et al.: Monitoring of minimal residual disease (MRD) by real-time quantitative reverse transcription PCR (RQ-RT-PCR) in childhood acute myeloid leukemia with AML1/ETO rearrangement. Leukemia 17 (6): 1130-6, 2003.
  45. Weisser M, Haferlach C, Hiddemann W, et al.: The quality of molecular response to chemotherapy is predictive for the outcome of AML1-ETO-positive AML and is independent of pretreatment risk factors. Leukemia 21 (6): 1177-82, 2007.
  46. Krönke J, Schlenk RF, Jensen KO, et al.: Monitoring of minimal residual disease in NPM1-mutated acute myeloid leukemia: a study from the German-Austrian acute myeloid leukemia study group. J Clin Oncol 29 (19): 2709-16, 2011.
  47. Corbacioglu A, Scholl C, Schlenk RF, et al.: Prognostic impact of minimal residual disease in CBFB-MYH11-positive acute myeloid leukemia. J Clin Oncol 28 (23): 3724-9, 2010.
  48. Cloos J, Goemans BF, Hess CJ, et al.: Stability and prognostic influence of FLT3 mutations in paired initial and relapsed AML samples. Leukemia 20 (7): 1217-20, 2006.
  49. Pui CH, Carroll WL, Meshinchi S, et al.: Biology, risk stratification, and therapy of pediatric acute leukemias: an update. J Clin Oncol 29 (5): 551-65, 2011.
eMedicineHealth Public Information from the National Cancer Institute

This information is produced and provided by the National Cancer Institute (NCI). The information in this topic may have changed since it was written. For the most current information, contact the National Cancer Institute via the Internet web site at or call 1-800-4-CANCER

This information is not intended to replace the advice of a doctor. Healthwise disclaims any liability for the decisions you make based on this information.

Some material in CancerNet™ is from copyrighted publications of the respective copyright claimants. Users of CancerNet™ are referred to the publication data appearing in the bibliographic citations, as well as to the copyright notices appearing in the original publication, all of which are hereby incorporated by reference.

Medical Dictionary