Font Size
A
A
A

Thyroid Cancer Treatment (Professional) (cont.)

Stage I and II Papillary and Follicular Thyroid Cancer

Surgery is the therapy of choice for all primary lesions. Surgical options include total thyroidectomy or lobectomy. The choice of procedure is influenced mainly by the age of the patient and the size of the nodule. Survival results may be similar; the difference between them lies in the rates of surgical complications and local recurrences.[1,2,3,4,5,6,7]

Standard treatment options:

  1. Total thyroidectomy: This procedure is advocated because of the high incidence of multicentric involvement of both lobes of the gland and the possibility of dedifferentiation of any residual tumor to the anaplastic cell type. The procedure is associated with a higher incidence of hypoparathyroidism, but this complication may be reduced when a small amount of tissue remains on the contralateral side. This approach facilitates follow-up thyroid scanning.

    I131: Studies have shown that a postoperative course of therapeutic (ablative) doses of I131 results in a decreased recurrence rate among high-risk patients with papillary and follicular carcinomas.[4] It may be given in addition to exogenous thyroid hormone but is not considered routine.[8] Patients presenting with papillary thyroid microcarcinomas (tumors <10 mm) have an excellent prognosis when treated surgically, and additional therapy with I131 would not be expected to improve the prognosis.[9]

  2. Lobectomy: This procedure is associated with a lower incidence of complications, but approximately 5% to 10% of patients will have a recurrence in the thyroid following lobectomy.[10] Patients younger than 45 years will have the longest follow-up period and the greatest opportunity for recurrence. Follicular thyroid cancer commonly metastasizes to lungs and bone; with a remnant lobe in place, use of I131 as ablative therapy is compromised. Abnormal regional lymph nodes should be biopsied at the time of surgery. Recognized nodal involvement should be removed at initial surgery, but selective node removal can be performed, and radical neck dissection is usually not required. This results in a decreased recurrence rate, but has not been shown to improve survival.

    Following the surgical procedure, patients should receive postoperative treatment with exogenous thyroid hormone in doses sufficient to suppress thyroid-stimulating hormone (TSH); studies have shown a decreased incidence of recurrence when TSH is suppressed.

    I131: Studies have shown that a postoperative course of therapeutic (ablative) doses of I131 results in a decreased recurrence rate among high-risk patients with papillary and follicular carcinomas.[4] It may be given in addition to exogenous thyroid hormone but is not considered routine.[8] Patients presenting with papillary thyroid microcarcinomas (tumors <10 mm) have an excellent prognosis when treated surgically, and additional therapy with I131 would not be expected to improve the prognosis.[9]

Current Clinical Trials

Check for U.S. clinical trials from NCI's list of cancer clinical trials that are now accepting patients with stage I papillary thyroid cancer, stage I follicular thyroid cancer, stage II papillary thyroid cancer and stage II follicular thyroid cancer. The list of clinical trials can be further narrowed by location, drug, intervention, and other criteria.

General information about clinical trials is also available from the NCI Web site.

References:

  1. Carling T, Udelsman R: Thyroid tumors. In: DeVita VT Jr, Lawrence TS, Rosenberg SA: Cancer: Principles and Practice of Oncology. 9th ed. Philadelphia, Pa: Lippincott Williams & Wilkins, 2011, pp 1457-72.
  2. Grant CS, Hay ID, Gough IR, et al.: Local recurrence in papillary thyroid carcinoma: is extent of surgical resection important? Surgery 104 (6): 954-62, 1988.
  3. Cady B, Rossi R: An expanded view of risk-group definition in differentiated thyroid carcinoma. Surgery 104 (6): 947-53, 1988.
  4. Mazzaferri EL, Jhiang SM: Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med 97 (5): 418-28, 1994.
  5. Staunton MD: Thyroid cancer: a multivariate analysis on influence of treatment on long-term survival. Eur J Surg Oncol 20 (6): 613-21, 1994.
  6. Tollefsen HR, Shah JP, Huvos AG: Follicular carcinoma of the thyroid. Am J Surg 126 (4): 523-8, 1973.
  7. Edis AJ: Surgical treatment for thyroid cancer. Surg Clin North Am 57 (3): 533-42, 1977.
  8. Beierwaltes WH, Rabbani R, Dmuchowski C, et al.: An analysis of "ablation of thyroid remnants" with I-131 in 511 patients from 1947-1984: experience at University of Michigan. J Nucl Med 25 (12): 1287-93, 1984.
  9. Hay ID, Grant CS, van Heerden JA, et al.: Papillary thyroid microcarcinoma: a study of 535 cases observed in a 50-year period. Surgery 112 (6): 1139-46; discussion 1146-7, 1992.
  10. Hay ID, Grant CS, Bergstralh EJ, et al.: Unilateral total lobectomy: is it sufficient surgical treatment for patients with AMES low-risk papillary thyroid carcinoma? Surgery 124 (6): 958-64; discussion 964-6, 1998.
eMedicineHealth Public Information from the National Cancer Institute

This information is produced and provided by the National Cancer Institute (NCI). The information in this topic may have changed since it was written. For the most current information, contact the National Cancer Institute via the Internet web site at http://cancer.gov or call 1-800-4-CANCER

This information is not intended to replace the advice of a doctor. Healthwise disclaims any liability for the decisions you make based on this information.

Some material in CancerNet™ is from copyrighted publications of the respective copyright claimants. Users of CancerNet™ are referred to the publication data appearing in the bibliographic citations, as well as to the copyright notices appearing in the original publication, all of which are hereby incorporated by reference.





Medical Dictionary