Font Size

Chronic Myelogenous Leukemia Treatment (Professional)

General Information About Chronic Myelogenous Leukemia

Incidence and Mortality

Estimated new cases and deaths from chronic myelogenous leukemia (CML) in the United States in 2013:[1]

  • New cases: 5,920.
  • Deaths: 610.

CML is one of a group of diseases called the myeloproliferative disorders. Other related entities include the following:

(Refer to the PDQ summary on Chronic Myeloproliferative Disorders Treatment for more information.)

CML is a clonal disorder that is usually easily diagnosed because the leukemic cells of more than 95% of patients have a distinctive cytogenetic abnormality, the Philadelphia chromosome (Ph1).[2,3] The Ph1 results from a reciprocal translocation between the long arms of chromosomes 9 and 22 and is demonstrable in all hematopoietic precursors.[4] This translocation results in the transfer of the Abelson (ABL) on chromosome 9 oncogene to an area of chromosome 22 termed the breakpoint cluster region (BCR).[4] This, in turn, results in a fused BCR/ABL gene and in the production of an abnormal tyrosine kinase protein that causes the disordered myelopoiesis found in CML. Furthermore, these molecular techniques can now be used to supplement cytogenetic studies to detect the presence of the 9;22 translocation in patients without a visible Ph1 (Ph1-negative).

Ph1-negative CML is a poorly defined entity that is less clearly distinguished from other myeloproliferative syndromes. Patients with Ph1-negative CML generally have a poorer response to treatment and shorter survival than Ph1-positive patients.[5] Ph1-negative patients who have BCR/ABL gene rearrangement detectable by Southern blot analysis, however, have prognoses equivalent to Ph1-positive patients.[6,7] A small subset of patients have BCR/ABL detectable only by reverse transcriptase–polymerase chain reaction (RT–PCR), which is the most sensitive technique currently available. Patients with RT–PCR evidence of the BCR/ABL fusion gene appear clinically and prognostically identical to patients with a classic Ph1; however, patients who are BCR/ABL-negative by RT–PCR have a clinical course more consistent with chronic myelomonocytic leukemia, which is a distinct clinical entity related to myelodysplastic syndrome.[6,8,9] Fluorescent in situ hybridization of the BCR/ABL translocation can be performed on the bone marrow aspirate or on the peripheral blood of patients with CML.[10]

At the time of diagnosis of patients with CML, splenomegaly is the most common finding on physical examination.[10] The spleen may be enormous, filling most of the abdomen and presenting a significant clinical problem, or the spleen may be only minimally enlarged. In about 10% of patients, the spleen is neither palpable nor enlarged on splenic scan.

The median age of patients with Ph1-positive CML is 67 years.[11] While the median survival used to be 4 to 6 years, with the advent of the new oral therapies, the median survival is expected to approach normal life expectancy for most patients, although it is still too soon to say this definitively.


  1. American Cancer Society.: Cancer Facts and Figures 2013. Atlanta, Ga: American Cancer Society, 2013. Available online. Last accessed March 13, 2013.
  2. Kurzrock R, Kantarjian HM, Druker BJ, et al.: Philadelphia chromosome-positive leukemias: from basic mechanisms to molecular therapeutics. Ann Intern Med 138 (10): 819-30, 2003.
  3. Goldman JM, Melo JV: Chronic myeloid leukemia--advances in biology and new approaches to treatment. N Engl J Med 349 (15): 1451-64, 2003.
  4. Deininger MW, Goldman JM, Melo JV: The molecular biology of chronic myeloid leukemia. Blood 96 (10): 3343-56, 2000.
  5. Onida F, Ball G, Kantarjian HM, et al.: Characteristics and outcome of patients with Philadelphia chromosome negative, bcr/abl negative chronic myelogenous leukemia. Cancer 95 (8): 1673-84, 2002.
  6. Martiat P, Michaux JL, Rodhain J: Philadelphia-negative (Ph-) chronic myeloid leukemia (CML): comparison with Ph+ CML and chronic myelomonocytic leukemia. The Groupe Franšais de Cytogénétique Hématologique. Blood 78 (1): 205-11, 1991.
  7. Cortes JE, Talpaz M, Beran M, et al.: Philadelphia chromosome-negative chronic myelogenous leukemia with rearrangement of the breakpoint cluster region. Long-term follow-up results. Cancer 75 (2): 464-70, 1995.
  8. Oscier DG: Atypical chronic myeloid leukaemia, a distinct clinical entity related to the myelodysplastic syndrome? Br J Haematol 92 (3): 582-6, 1996.
  9. Kurzrock R, Bueso-Ramos CE, Kantarjian H, et al.: BCR rearrangement-negative chronic myelogenous leukemia revisited. J Clin Oncol 19 (11): 2915-26, 2001.
  10. Sawyers CL: Chronic myeloid leukemia. N Engl J Med 340 (17): 1330-40, 1999.
  11. Lee SJ, Anasetti C, Horowitz MM, et al.: Initial therapy for chronic myelogenous leukemia: playing the odds. J Clin Oncol 16 (9): 2897-903, 1998.
eMedicineHealth Public Information from the National Cancer Institute

This information is produced and provided by the National Cancer Institute (NCI). The information in this topic may have changed since it was written. For the most current information, contact the National Cancer Institute via the Internet web site at or call 1-800-4-CANCER

This information is not intended to replace the advice of a doctor. Healthwise disclaims any liability for the decisions you make based on this information.

Some material in CancerNet™ is from copyrighted publications of the respective copyright claimants. Users of CancerNet™ are referred to the publication data appearing in the bibliographic citations, as well as to the copyright notices appearing in the original publication, all of which are hereby incorporated by reference.

Medical Dictionary